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ABSTRACT

The primary question to be addressed by the present study was whether fluency 

on component skills is important in the development of overall competency in 

mathematics.  Reading fluency has served as an excellent predictor of one’s reading 

comprehension.  However, few studies have investigated whether the fluency on 

component skills is essential in the development of overall competency in mathematics.  

In fact, there has been a push for instructional strategies to deemphasize the importance 

component skills.  In the current study, 140 students in second- through fourth- grade 

classrooms from general education participated.  Each student took three curriculum-

based measurement probes (a single-skill mathematical computation probe, multiple-skill 

mathematical computation probes and maze reading passages), a mathematical reasoning 

probe, the Big Ideas probe and the Stanford Diagnostic Mathematics Test, Fourth Edition.  

Results of the six assessments were compared to determine if a fluency in component 

skills will adequately predict students’ mathematical comprehension.  Results 

demonstrated that the fluent component skills are in fact highly related to students’ 

mathematics comprehension.
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INTRODUCTION

The purpose of school is to help children to develop competence in various areas 

of academic functioning.   There is little debate about this general goal.  However, the 

means by which to achieve the goal of assisting students has stirred considerable 

discussion in literacy and in mathematics.  In fact, there is even disagreement about the 

meaning of the term competence.  The focus of this study is to examine mathematical 

competence or “comprehension” and its relationship to mathematics computational 

fluency.  This preliminary study is designed to examine this relationship in order to begin 

to better understand mechanisms for improving mathematical competency.

The study of mathematics is particularly important in light of studies such as the 

Trends in International Math and Science Study (TIMSS), which reported that the fourth 

and eighth grade students in this country are performing below average in mathematics 

achievement (NCES, n.d.).  In 1999, U.S. eighth-grade students ranked nineteenth in 

mathematics out of 34 nations.  This is markedly lower than some of the higher achieving 

countries, which included Singapore, Korea, Chinese Taipei, Hong Kong, and Japan.  

Although some believe that students in other high achieving countries spend more time 

engaged in the study of mathematics, TIMSS conducted ethnographic studies on teachers 

and students in the United States and Japan and found that American students spend more 

time studying mathematics than Japanese students in school (American Federation of

Teachers, n.d.).  

Based on the TIMSS results, Koretz, McCaffrey, and Sullivan (2001) compared 

the variability of performance in the United States with that of several other countries.  

The researchers further investigated the variation distributed within and between 
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classrooms.  Compared to that of Japanese and Korean schools, in the United States, 

much of the variance lies between classrooms rather than within a classroom (Koretz et 

al, 2001).  These findings remind us of the influence of instruction on students’ 

performance and suggest the locus of the problem may lie with instructional practices.  

There are wide differences in the type of instructional practices a teacher uses.   

Obviously, the curriculum chosen by a school district plays a large role in the types of 

activities and objectives that a teacher may select.  Importantly, high stakes testing 

influences instruction because many teachers attempt to align instruction with the 

objectives assessed by the test so as to improve student performance.  Prior to entering a 

classroom, teachers are influenced by the type of training they receive at colleges and 

universities.   All of these separate forces on the teacher, including the curricular 

materials from publishers, the construction of high stakes tests, and the content of 

university teacher preparation programs, have increasingly been influenced by a 

constructivist view that prescribes what needs to be learned, how it should be taught, and 

how to test for it. 

 A central assumption of the constructivist approach is the notion that students 

will become more proficient at mathematics if they discover the rules and methods of 

mathematics for themselves rather than via direct instruction from the teacher.   

(Mathematically correct, n.d., para. 2). Led by groups such as the National Council of 

Teachers of Mathematics (NCTM), there has been a push for instructional strategies that 

honor individual students' thinking and reasoning and encourage students to develop 

skills to solve problems (NCTM, 2000, p. 75).  Although the constructivist approach is 

quite prominent among mathematics educators (Kamii, 1991), it is not the only 
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instructional methodology being promulgate.   An alternative approach to constructivist 

theory derives out of learning theory (Binder, 1993).  The practices advocated from this 

perspective, while quite different from the instructional practices used within the 

constructivist model, have in sight a similar outcome:  assisting children to become 

competent in mathematics.  Learning theory, which is also referred to as behavioral 

theory, posits that competency is arrived at not by having students construct their own 

schemas but by breaking complex skills into component parts and then teaching these 

skills in a linear sequence from least to most difficult.  The constructivists have criticized 

(Kamii, 1991) this approach because they suggest teaching skills in isolation divorces the 

skills from meaning.  How does a child, for example, come to understand that the symbol 

“3” represents three physical objects when the child is mindlessly counting the number or 

adding it to other numbers without considering for a moment what the symbol means.    

A major point of divergence between the two views centers on the value of 

component skills.  From a behaviorist perspective, component skills are the essential 

building blocks of all higher order skills and, in fact, it is difficult, if not impossible to 

become competent at higher level skills without first becoming proficient at lower order 

component skills. For example, they would argue that becoming proficient at algebra is 

difficult if you are not proficient at factoring, which in turn requires proficiency in 

division, and so on.  Proficient for the behaviorist means that a skill has been practiced to 

a very high level of fluency such that the skill can be performed almost automatically 

(Binder, 2003).  Constructivists have labeled the rote practice of component skills as 

“drill and kill” because they believe repeated drill and practice kills interest in 

mathematics (Kamii, 1991; Kamii, Lewis, & Livingstone, 1993).  
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The primary question to be addressed by the present study is whether fluency on 

component skills is important in the development of overall competency in mathematics.  

Behavioral theory would predict fluency on component skills is important whereas 

constructivist theory would predict that at best fluency on component skills is irrelevant 

to attaining competency in higher order skills.  The question is important because it has 

relevance to mathematics instruction in that these two theoretical frameworks of 

mathematics instruction lead to differing notions about what type of practices lead to 

competence and even what competence is.  In the next section, some background is 

provided about the basic underpinnings of the behavioral versus constructivist models.

Behaviorism and Constructivism

Behaviorism and Constructivism are two basic approaches that influence current 

educational practice.  Behaviorism is an approach that focuses on effective teaching to 

establish fluency in basic component skills and their underlying tool elements in order to 

attain competency (Johnson, 1991; Johnson & Layng, 1993).  Constructivism is based on 

Piaget’s theory and holds that knowledge is something to be constructed, rather than 

acquired.  The Student’s task is creating and coordinating relationships.  In the following 

sections, major tenets of the Behavioral and Constructivist theories will be delineated.  

Constructivist Approach

The Constructivist approach is based on the idea that children construct 

knowledge by creating and coordinating relationships (Kamii, 1991).  In order to 

ultimately construct strategies for solving mathematical problems, the approach 

emphasizes three major components: Discovery Learning, Whole Math, and Cooperative 

Learning.
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Discovery Learning.  Discovery learning pertains to the notion that students 

learn mathematics better if they are left to discover the rules and methods of mathematics 

for themselves, rather than being taught by teachers or textbooks (Mathematically 

Correct, n.d., para. 2).  The approach encourages students to invent their own procedure 

for the arithmetical operations (Kamii et al, 1993).  Instruction in “…which students 

construct meaning for the mathematical concepts and procedures they are investigating 

and engage in meaningful problem-solving activities” are considered ideal (Fuson, 

Carroll, & Drueck, 2000).  According to Kamii (1991), the only way students can learn 

mathematics is by making their own decisions and evaluating the results of their 

decisions.  

Whole Math. The premise behind whole math is to forego instruction in basic 

computational skills and emphasizes that instruction should focus on more complex skills 

(Kamii, 1991).  It affirms that schools must eliminate all worksheets and replace 

memorization of algorithms.  Basic computational skills are thought to make students 

into passive receivers of rules and procedures.  NCTM stresses that practice should be 

purposeful and should focus on developing thinking strategies and a knowledge of 

number relationship rather than drill in isolated facts (NCTM, 2000, p. 82).  NCTM’s 

recommendation aligns with the constructivists’ approach that educators should forego 

basic facts and introduce complex activities.  

Logically it follows that Constructivists also emphasize the use of calculators.  

They argue that although basic computation skills are necessary in solving complex 

problems, calculators will compensate a student’s lack of component skills and allow the 

students to focus on problem solving rather than mere computation.   
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Cooperative Learning.  The constructivist approach advocates learning thorough 

interaction and hence is a proponent of cooperative learning where students gather with 

peers in groups to construct strategies for solving mathematical problems, rather than sit 

in class with teachers instructing them (Cheney, 1997).  Kamii et al. (1993) described an 

ideal classroom as one in which a teacher proposed a problem to a class and had them 

attain an answer through discussion.  The teacher should not give them a hint or an 

answer until the class reaches an agreement.  The authors argue that absolutely nothing is 

arbitrary in mathematical knowledge; therefore, the class will eventually reach the correct 

answer.  NCTM recommends teachers to ensure that interesting problems and stimulating 

mathematical conversations are a part of each day (2000, p. 75).

Autonomy.  Piaget (1973) stated that autonomy is the ultimate goal in education 

and refers to it as the ability to think for oneself.  Kamii (1991) acknowledge Piaget’s 

theory and stated that children can learn to make choices only by making their own 

decisions and evaluating the results of their decisions.  Students are encouraged to make 

their own decisions and also to discuss with peers.  They are provided with as much time 

as necessary for the critical thinking and discussion.  Students are encouraged to not 

merely produce accurate answers but also to understand why a particular answer is 

correct.  As is recognizable from their perspective, fluency in the performance of 

calculations is not valued.  While most of the basic tenets of Constructivist theory differ 

from what Behavioral theory advocates, the extent to which fluency is valued is a major 

difference in the two views.  In the next section, the behavioral approach to instruction is 

considered.
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Behaviorist Approach

In order for the effective instruction to occur, one needs to understand how 

learning occurs for each student.  The notion of how students learn best from a behavioral 

perspective generally follows a linear step by step progression as opposed to the more 

holistic view espoused by constructivists.  Binder (2003), whose view typifies a 

behavioral perspective, suggested that it is helpful to view learning as occurring in three 

stages: initial learning for accuracy or quality, practice for fluency and endurance, and 

application or combination of the components into composite behavior.  Binder’s three 

stages of learning are similar to the learning hierarchy proposed by Haring, Lovitt, Eaton, 

& Hansen (1978).  The learning hierarchy contains four stages: acquisition, fluency, 

generalization, and adaptation.  With proper instruction, students first learn how to 

perform a skill accurately before they perform it fluently.  The fluent performance of a 

skill, in turn, is believed to promote generalization to novel items, times, and settings by 

increasing potential performance capacity.  Students will then be able to identify elements 

of previously learned skills that they can adapt to the new demands or situation.  

In the following sections, the major hallmarks of a behavioral approach to 

instruction are elaborated upon.  Embedded in each section below is an example of 

factoring equations in algebra using practices advocated by Johnson and Layng (1992), 

proponents of behavioral teaching methods.  

Component Skills.  A Number of researchers emphasize that component or basic 

skills first need to be taught in order for students to eventually develop more complex 

skills (Binder, 1993; Johnson & Layng, 1992, 1993; mathematically correct, n.d., para. 

6).  The students’ task in solving a new problem is to first identify component activities 
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that would produce the desirable educational goal.  Students can select those component

activities based on the related and unrelated component performances that have been 

encouraged in the past (Johnson & Layng, 1992, 1993).  In factoring equations in algebra, 

for example, component skills such as number writing, addition facts, isolating and 

solving for X in a simple linear equation, and squaring and factoring squared numbers are 

first introduced to the students (Johnson & Layng, 1992).

Fluency.  According to the behaviorist approach, fluency is considered to be a 

necessary component for learners to achieve competency.  Fluency is defined as the 

combination of accuracy plus speed and is typically converted to a rate-based metric such 

as number correct per minute (Binder, 1993, 2002, 2003).  Binder (2003) remarked that a 

description of behavior without its temporal dimension is incomplete and ultimately false 

because it prevents researchers from seeing the performance beyond the attainment of 

100% accuracy.  Fluency has been shown to be an element in the development of 

“competency” within a wide variety of situations including special and general education 

(Shinn, 1989), adult literacy programs (Johnson and Layng, 1992), and customer call 

centers (Binder, 2002).  

In addition to Binder’s (2003) definition of fluency, Johnson and Layng (1992, 

1993) further affirm that fluency also requires the ability to quickly link a component 

behavior available in the environment with other component behaviors and to more 

complex behaviors.  Every complex skill requires fluent component skills in order to 

perform those complex skills with competency.  To be fluent, learners need to be able to 

identify related and unrelated component skills in their environment without hesitation.  
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To return to the example of factoring, once students are introduced to the 

component skills necessary to factor equations in algebra, the next step is instruction, 

which focuses on fluency building.  To increase fluency, instruction generally 

incorporates practice with feedback.  Johnson and Layng (1992) have suggested that 

unless component activities take place fluently, the higher-level comprehension will not 

occur.

Application.  A student who is accurate and fluent in responding may still fail to 

apply component skills to new situations and settings.  Another element necessary for a

student to achieve competency is application.  Application refers to students being able to 

use a skill in wide range of settings and situations, or to accurately discriminate between 

the target skill and similar skills.  

It can also be said in solving factoring equations in algebra.  Learners who have 

reached application level will not get confused whether to use addition, subtraction, 

multiplication, or division to solve the factoring.  They may also be able to solve 

factoring equations from different workbook or outside of school.  

Adaptation.  Even when a student is able to use a skill in many situations, he or 

she may not yet be able to modify or adapt the skill to fit novel task-demands or 

situations.  The goal of attaining competency is to become capable of identifying 

elements of previously learned skills that he or she can adapt to the new demands or 

situation.  

Adaptation would be needed in factoring equations so that the student can adapt 

the skill to different demands or situation (e.g., calculus).  When a student is presented 

with new environmental demands, the basic component behaviors he or she has learned 
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can apply and adapt to more complex and flexible activities (Johnson & Layng, 1992, 

1993; Binder, 2002).  

Review of Behavioral Research Pertaining to Academic Competency

In the preceding sections, behavioral and cognitive views have been outlined.  

Both theories are open to criticism.  A strength of the constructivist view is “face 

validity” especially among school based professionals who tend to believe that students 

need to learn to think for themselves, and “drill and kill” associated with the behavioral 

approach is opposing to the development of “understanding”.  However, while the 

roadmap to competency designed by the construtivists is more palatable to some, the 

outcomes have often been disappointing and the dismal mathematics performance of U.S. 

students is sometimes attributed to the constructivist approach (Clayton, 2000). The 

research base to support the constructivist approach has not evolved.  The constructivists 

have often referred to basic research in cognitive psychology as supporting many of their 

underlying assumptions.  However, this approach was criticized by three prominent 

cognitive psychologists including Noble Prize winner Herb Simon (Anderson, Reder & 

Simon, n.d., para. 1) who noted that “frequent misperception that the move from 

behaviorism to cognitivism implied an abandonment of the possibilities of decomposing 

knowledge into its elements for purposes of study and decontextualizing these elements 

for purposes of instruction.” (Anderson, et al., n.d., para. 1)  They further suggested that 

that cognitivism, which is cited as a basis of constructivism, “does not imply outright 

rejection of decomposition and decontextualization.” (Anderson, et al, n.d., para. 1)   

Behaviorists are most critical of the Constructivist approach because of its focus 

on accuracy as the component most essential for competency (Binder, 2003).  The stage 
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of fluency building is skipped over and teachers use complex activities to teach 

component elements.  Students devote themselves directly to solving complex problems 

and invent their own algorithms.  However, this reverse manner of teaching is criticized 

by behaviorists as lacking the substantial element of fluency to advance students toward 

mastery (Binder, 1993).  Behaviorists argue that by incorporating a measure of fluency, 

we gain knowledge on students’ performance beyond 100 percent accuracy (Binder, 

1993, 2003).  With its percent-correct evaluation, accuracy does not allow us to detect the 

difference between instructional level and mastery level (Binder, 2003).  Although it is a 

requisite component toward true mastery, accuracy is a poor predictor of whether 

performance will be retained, maintained, and applied to more complex situations 

(Johnson & Layng, 1992, 1993).  Once a learner is able to perform a skill with speed and 

endurance, he or she is then ready to apply his or her skills to real-world context (Johnson 

& Layng, 1992, 1993).    Studies in support of these general assertions by behaviorists are 

reviewed below.  

Studies conducted by behaviorists focus on identifying the importance of fluent 

component skills to be able to perform composite skills.  In general education, as students 

progress toward intermediate grades, they are expected to perform more complex 

activities in each subject, which will be difficult for students who are performing at 

frustrational level.  The purpose of each subject changes to remembering and 

understanding key concepts, integrating new material with prior knowledge, and applying 

the knowledge to problem solving (MacArthur & Haynes, 1995).  Although the studies 

introduced in the following section focused on reading, the behavioral principles on how 

a student achieve competency are similar to that on mathematics.  
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CBM Validity Studies in Reading.  This section reviews literature pertaining to 

Curriculum-based Measurement as it applies to reading.  Although the focus of the 

present study is on mathematics, research pertaining to reading is more comprehensive.  

Because of the emphasis on fluency in reading, some of the results of studies on reading 

have applicability to mathematics.  In the area of reading children who have achieved 

competency, decoding is a highly automatic task.  If decoding consumes too much 

performance capacity, then the extra effort taken in decoding will detract from 

comprehension at sentence, paragraph, and text levels (Tan & Nicholson, 1997).  

Increases in the speed of performance improves the range of a student’s potential 

performance capacity, enabling application or combination of skills into more complex 

behavior (Binder, 1993; Helwig et al, 1999)

One prominent method of assessing fluency is known as Curriculum-based 

Measurement (CBM).  CBM is a standardized set of measurement procedures that can be 

used to evaluate performance outcomes in the basic academic skill areas of reading, 

spelling, mathematics, and written expression (Shinn, 1989).  CBM can summarize and 

inform decision making for use in screening, eligibility determination, instructional 

planning, and program evaluation (Deno, 1986).  In the area of reading, the number of 

words a student reads correctly from a reading passage in a one-minute interval is 

counted.  For mathematics, the number of correctly written digits during a two-minute 

interval from grade-level computational problems is counted (Shinn, 1989).  Deno, 

Mirkin, & Chiang (1982) conducted a CBM validity study in reading using CBM and a 

number of criterion-referenced tests.  The criterion-referenced tests utilized in the study 

were the Stanford Diagnostic Reading Test, the Woodcock Reading Mastery Test, and 
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the Reading Comprehension subtest from the Peabody Individual Achievement Test.  The 

researchers found that number of words read per minute correlated highly with the results 

from the norm-referenced tests.  Most of the correlation coefficients were above .80.  The 

researchers therefore concluded that passage reading was a valid measure of students’ 

reading skill.  

Burns et al. (2002) investigated the relationship between reading fluency and 

comprehension by having third- and fourth-grade students as participants.  The 

researchers utilized four norm-referenced reading tests in which students read passages 

with scrambled words orally and answer inferential and literal comprehension questions 

after completing each passage.  The passages included an incremental percentage (0%, 

10%, 20% and 30%) of scrambled words.  The percentage of comprehension questions 

answered correctly as well as the reading rates served as the dependent measures.  

Results demonstrated that the incremental increase in scrambled words significantly 

reduced reading fluency and the resulting comprehension, providing with evidence of the 

direct link between reading comprehension and fluency.  Faster readers tend to have 

higher comprehension and make more inferences from written materials than do students 

reading at lower rates (Engen & Hoien, 2002).  There have been ample additional studies 

that examined the relationship between fluent component skills and comprehension in 

reading using CBM (e.g., Marston, 1989; Shinn, Good, Knutson, Tilly & Collins, 1992; 

Kuhn & Stahl, 2003).  Although correlational studies provide practical information to a 

great extent, it does not reveal the causal relationship.  The studies introduced below are 

several interventions utilizing fluency in reading to strengthen students’ reading 

comprehension.  
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Fluency-building Interventions on Reading.  Graham, Harris, and Chorzempa 

(2002) examined whether supplemental spelling instruction had an effect on spelling, 

writing, and reading for second-grade students who were experiencing difficulty learning 

to spell.  In addition to regular spelling class, the experimental group was provided with 

supplemental spelling instruction focused on phonemic awareness and fluency.  The 

supplemental instruction included teaching the students common sound-letter 

combinations, spelling patterns or rules involving long and short vowels, and frequently 

occurring phonograms or rhymes.  Students in the control condition were taught 

mathematics skills instead.  The instructors taught the skills using word sorting and timed 

how long it took the students to complete the task.  The students received reinforcement 

if they sorted correctly and exceeded their previous scores.  The authors found a 

statistically significant difference between the experimental and control conditions in all 

spelling, writing, and reading post assessments.  Results demonstrated that building 

fluency on component behavior (spelling) enables one to excel their performance on 

composite behavior (spelling, reading, and writing).  Inefficient phonological awareness 

processes will take an excessive share of mental resources available for comprehension 

and will produce less efficient comprehension.  There are studies that have likewise 

demonstrated the impact of phonological awareness on reading comprehension 

(Connerlly, Johnston, & Thompson, 2001; Engen & Hoien, 2002).  

Tan and Nicholson (1997) investigated the relationship between fluency and 

comprehension by comparing school-age children who have received training on rapid 

decoding to those who never have received the training.  The training facilitated 

flashcards, and the condition varied in the single-word training condition, the phrase-
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training condition, and the control condition.  In the single-word condition, students were 

taught to recognize each target word by using flashcards.  In the phrase-training 

condition, students were shown some sentence cards as well as phrase cards, containing 

the target words from the passage in which they will read after the training.  Practice in 

reading the flashcards continued throughout the 20-minute training session, with the aim 

of achieving the preset criterion rate of 90 words per minute.  Trained and untrained 

students read aloud passages containing target words after the training, answer 

comprehension questions, and retell the passage in their own words.  Results showed that 

both of the trained conditions were superior to the control condition on comprehension 

scores.  As is apparent from the results of the studies above, fluency appears to be a vital

component for students to achieve comprehension in area of reading.  

The results of the reading studies reviewed here illustrate that students who are 

fluent on component skills have better reading comprehension.  In the next section, 

studies pertaining to mathematics are reviewed.  

CBM and Mathematics. Although CBM is a well-established technology for 

measuring student proficiency in reading, less is known about the technical adequacy of 

CBM in mathematics.  Shinn and Marston (1985) conducted a study to obtain construct 

validity evidence for CBM mathematics measures and found that CBM mathematics 

probes differentiated students in general education from students with mild disabilities 

and also from general education students in different grade.  Thurber, Shinn, and 

Smolkowski (2002) investigated the relation of CBM in mathematics to the constructs of 

general mathematics achievement, computation, and application using confirmatory 

factor analysis.  Results indicated that computation and applications were distinct, but 
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highly related constructs.  The researchers also suggested that skills in one area are 

necessary for success in the other.

The link between fluency in basic computation skills and higher order 

mathematics was noted by Gardner et al. (2001) who investigated the effectiveness of an 

after-school program on elementary school aged students’ reading and mathematical 

performances.  In this study, ten urban at-risk African-American male students 

participated during the course of one year.  The students were one or more years below 

grade level in both reading and mathematics.  The mathematics intervention included a 

reciprocal peer-tutoring program incorporating flashcards.  At the beginning of a week, 

all students were administered a timed test to establish a baseline.  During the week, the 

tutor and tutee changed roles during sessions lasting for two-minutes.  At the end of each 

week, an adult experimenter reviewed the multiplication flashcards with each student.  A 

multiplication card was considered to be mastered if a student could respond correctly to 

the question presented in less than three seconds.  Results showed that the use of the 

peer-mediated interventions improved both the reading and mathematics skills of 

students.  In mathematics in particular, every student improved both his or her accuracy 

and fluency rates on multiplication facts.  The group’s mean accuracy difference score 

was 52.5% across all math facts and the mean fluency rate was 35.2% across all 

multiplication facts.  Of particular interest to the present investigation, the author also 

noted that the students who could not respond accurately and fluently to basic

multiplication facts had difficulty with division, fractions, percentages, and algebra items 

on the state’s mathematics proficiency test.  
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The purpose of the present study was to further examine the linkage between 

component skill fluency and overall mathematical competence in children.  The impetus 

for the study derives from reading where it has been shown that Reading Fluency is 

highly correlated with Reading Comprehension.  The purpose of this study is to 

investigate whether mathematics fluency in component skills correlates with mathematics 

“comprehension.”  Johnson and Layng (1992) affirm, “…it is only the accumulation of 

weak component skills that makes learning harder and harder”.   If a student is fluent in 

the basic component skills necessary in mathematics, the student would be expected to

perform better on more complex materials in mathematics than students who were not 

fluent in the component skills.

It should be noted that Comprehension is a term used in reading and has not been 

used in the literature in connection with mathematics.  Still there is a recognition in 

mathematics that skill in one area of mathematics is linked to and facilitates 

understanding in other areas.  These linkages have been discussed in both the 

constructivist and behavioral literature.  In the constructivist literature, there is a tendency 

to use terms such as “Number sense” (Kamii, 1985).  In the behavioral literature, Harniss, 

Stein, and Carnine (2002) used the term “big ideas” which are viewed as overarching

instructional goals that imply a deeper understanding of mathematics.  Kame’enui and 

Carmine (1998) define Big Ideas as “…major organizing principles that have rich 

explanatory and predictive power and are applicable in many situations and contexts”.  

Seven components comprise the big ideas: Place value, Expended notation, Commutative 

property, Associative property, Distributive property, Equivalence, and The “rate of 

composition/decomposition of numbers.”  These foundational ideas enable students to 
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apply composite behaviors.  When teachers select learning goals for their students, it has 

been recommended that the goals be focused on big ideas (Harniss, Stein, & Carnine, 

2002) because of their more general applicability across mathematics.   It is assumed that 

once learners become fluent in big ideas, they can gain foundational knowledge that will 

be useful for understanding more complex operations.   

Current Investigation

In the present study, one goal was to examine the relationship between component 

skills and mathematical “comprehension”.  Hence, there was a need to operationalize and 

measure the “comprehension”.  In the present study, comprehension was defined as 

performance on a broad based test of mathematics.  The purpose of the test used in the 

present study was not to measure specific skills, but to provide an index of global 

mathematics proficiency, similar to that obtained from an omnibus achievement test.  The 

current study utilized a criterion-reference test as a measure of the students’ mathematical 

comprehension.   The criterion-related validity of fluency on specific skills as measured 

by CBM probes was evaluated in the present study by examining the extent to which the 

CBM measures corresponded to other commonly accepted indexes of mathematical 

proficiency.  That is, concurrent validity estimates were obtained of formative measures 

using traditional criterion-referenced test performance as the criterion (Deno, 1985).  

High correlation between the achievement test and the CBM measures would serve as 

evidence that the component activity assessed in CBM measures satisfy standards for 

concurrent validity and can be used as an index of general mathematical proficiency.  In 

addition, by including an omnibus test of mathematical achievement and examining the 

relationship of the various measures used in this study to this more global measure of 
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“mathematical comprehension” (i.e., the relationship between the omnibus mathematics 

achievement tests and other measures of mathematical skill), the present study was 

intended to shed light on which of the brief measures would be associated with general 

mathematics competence.  
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METHOD

Participants and Setting

A total of 140 students in second- through fourth-grade classrooms from an 

elementary school located in the Southeast participated in the study.  Students from 

general education were considered for participation.  All phases of the experiment took 

place in the students’ regular classrooms under the supervision of the experimenter or an 

assistant.

Materials

Each student participating in the study was assessed using three Curriculum-

Based Measurement (CBM) probes (i.e., single- and multiple-skill mathematics 

computational probes and Maze reading passages), the mathematical reasoning probe, the 

Big Ideas probe and one criterion-referenced assessment (i.e., Stanford Diagnostic 

Mathematics Test, fourth edition).  In addition, teacher perceptions of the curriculum-

based measurement probes was obtained.  A brief description of each type of 

measurement follows.  

Curriculum-Based Measurement: Single-skill Mathematic Computation 

Probe (SSMCP).  The single-skill mathematic computation probe consisted of 

computational problems of one basic mathematics operation (i.e., addition, subtraction, 

multiplication, or division). Starting from a list of skills derived from their districts’ 

curriculum standards, teachers within a specific grade identified a specific computational 

skill for which instruction has recently been completed. 

The computation probes were generated utilizing the Mathematics Worksheet 

Factory Deluxe V3 © (1998-2002).  The software was developed by Schoolhouse 

Technology Corporation to facilitate the creation of mathematics materials.  Users can 



21

select problem sets from eight categories; concepts, operations, fractions, percent, 

measurement, geometry, graphing or algebra.  The program allows users to select the 

number of problems per page; how the problems are to be displayed; and the number of 

digits, decimals, multiples, addends, or remainders to be used for each problem.  A trial 

version of the software is available from 

http://www.schoolhousetechnologies.com/products/download.htm.  Based on the study 

conducted by Hintze et al. (2002), the two-minute single-skill mathematic computational 

probe was administered only once.   For the current study, the probes contained 40 

questions, and each problem was presented vertically.

Curriculum Based Measurement: Multiple-skill Mathematics Computation 

Probes (MSMCP).  The multiple-skill mathematics computation probes consisted of a 

sample of basic math operation (i.e., addition, subtraction, multiplication, and/or 

division), which are grade appropriate according to the state curriculum guide.   The 

computational skills included in the probes were selected from a list of skills nominated 

by teachers within each grade.  The probe was generated from the same software 

described above, in the same manner as the single-skill mathematical computational 

probe was generated.  The probes contained either 40 or 42 questions with an equal 

number of each operation (e.g., 20 problems in addition and 20 problems in subtraction 

for second grade probe).  Based on a previous study, the students will be given three 

equivalent MSMCPs (Hintze et al., 2002).

Mathematical Reasoning Probe.  A mathematical reasoning probe was 

constructed using items that reflect constructs described by the NCTM Standards.  The 

purpose of this probe was to evaluate the validity of assessments designed to evaluate 

http://www.schoolhousetechnologies.com/products/download.htm
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students’ mathematical thinking and reasoning skills.   There are ten NCTM Standards 

that apply across each grade-level, and several specific content areas are emphasized in 

each grade band.  For the grade band of pre-kindergarten through grade 2, the core 

program areas are the Number and Operations and Geometry (see Appendix A for a 

definition of each content area).  For the grade-band of grades 3-5, Multiplicative 

Reasoning and Equivalence (Algebra) are described as the central themes (see Appendix 

B for a definition of each theme).  The definitions from each content area are available 

from http://standards.nctm.org/document/chapter1/index.htm.  Among the content areas 

emphasized as essential by the NCTM, an area in which the definition matched with one 

of the six content areas of the state’s curriculum standard was selected.  In order to be 

consistent with the curriculum of the district in which the study was conducted, the 

mathematics text and an accompanying workbook used by the district were then utilized 

as an item pool from which to draw items.    That is, the type of items selected was 

guided by NCTM standards but the actual items were taken from curricular materials 

used in the district.  The mathematical reasoning probes for each grade contained 20 

items. 

Big Ideas Probe.  In an attempt to evaluate the validity of assessments designed 

to review students’ knowledge of the major organizing principles, a big ideas probe was 

constructed.  The probe was generated using items that reflect organizing principles 

described by Harniss, Stein, and Carnine (2002).   There are seven organizing principles 

in big ideas that are considered to have rich explanatory and predictive power and are 

applicable in many situations and contexts (Kame’enui & Carnine, 1998).   Amongst the 

big ideas principles highlighted as crucial by Harniss, Stein, and Carnine (2002), the 

http://standards.nctm.org/document/chapter1/index.htm
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principle of place value was selected for two reasons.  First, this skill is more easily 

operationalized and measured than others.  Second, place value is an important skill at all 

elementary grade levels as evidenced by its prominence on the state’s curriculum 

standards for each grade.  The big ideas probes for each grade contained 20 items.  

Curriculum Based Measurement: Maze Reading Passages.  Studies have 

demonstrated the importance of students’ reading skills in performing mathematics 

effectively (Clements, 1980; Clarkson, 1983; Helwig et al., 1999; Helwig et al., 2000).  

In order to assess the contribution of reading to overall mathematics competency, Maze 

reading probes were administered.  Since the primary focus of the study was 

mathematics, Maze probes were chosen as a fast but valid method of assessing reading.  

Studies that have examined the validity of maze reading have indicated they have 

acceptable psychometric properties.  Jenkins and Jewell (1993) investigated whether 

Maze was a suitable measure of reading performance and reported correlations higher 

than .80 both with the Metropolitan Achievement Test (MAT) (r = .80, p<.01) and Gates-

MacGinite Reading Test (r =.85, p<.01).  Fuchs and Fuchs (1990) examined the relation 

between performance on second- to third- grade maze passages and the Reading 

Comprehension subtest of the Stanford Achievement Test.  The average correlation 

between the two assessments was .77.  In addition to its efficiency, Maze is claimed to 

assess reading proficiency including an explicit comprehension element and therefore has 

better face validity than Oral Reading Fluency (Jenkins & Jewell, 1993).  

The probes for the second through the fourth grades were constructed from the 

bank of reading passages created by Louisiana State University School Psychology 

Department.  Information about the reading passages is available from 
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http://bitwww1.psyc.lsu.edu/reading%20center.htm.  Once the original reading probes 

were selected, the Maze passages were generated by deleting every seventh word after 

the first sentence as has been recommended by Fuchs and Fuchs (1992).  In place of the 

deleted word, a blank was inserted.  Next to the blank, in each case, three alternative 

words were printed including one correct word and two incorrect words.  Based on the 

study conducted by Fuchs, Fuchs, and Deno (1982), students were administered three 

two-minute Maze probes during one complete assessment session, in order to control the 

varying degrees of difficulty of the reading passages.  The score used in most of the 

analyses was the median score of the three passages administered. 

The Readability of the passages were calculated by Readability Calculations v.3.7 

© (2000) drawn from Micro Power and Light Company.  The Spache readability formula, 

widely used in assessing first through fourth grade, was utilized in the current study.   

Passages were evaluated prior to formatting for the maze and were at the student’s grade 

placement level. 

Stanford Diagnostic Mathematics Test, Fourth Edition (SDMT-4).  The 

SDMT-4 is a widely used group administered assessment containing six levels ranging 

from Red (for grades 1 to 2) to Blue (grades 9 to 13).  Students in the current study 

consisted of second, third and fourth graders.  They were given the Orange, Green and 

Purple levels, respectively.  At each level, there are 32 multiple-choice questions 

pertaining to Concepts and Applications, and 20 multiple-choice questions pertaining to 

Computation.  The Computation area includes items on algorithms of addition, 

subtraction, multiplication, and division.  The Concepts and Applications area measures 

http://bitwww1.psyc.lsu.edu/reading center.htm
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number systems and numeration, patterns and functions, graphs and tables, problem 

solving and geometry and measurement.  

Internal consistency reliability estimates generally are above .80 for the SDMT-4. 

Evidence of construct validity is found in the correlations obtained between the SDMT-4 

and the Otis-Lennon School Ability Test, Sixth Edition.  The correlations among subtests 

on the two instruments are in the .60s and .70s (Impara & Plake, 1998).  

Teacher Perceptions of the Current Probes.  In an attempt to obtain information 

on social validity, teachers were asked to express their satisfaction with the mathematics 

curriculum-based measurement probes and the mathematical reasoning probe.  The 

questionnaire along with an example of each probe was handed to the teachers on the first 

day of the administration and was collected the following day.  The questionnaires were 

collected before the probes had been scored.  Teachers were asked to respond to the 

following statements: 1) Probe X will accurately measure student performance in 

mathematics, 2) Probe X will reflect the strengths and the weaknesses the student have, 

and 3) I would use Probe X for assessing student performance in mathematics.  Teachers 

will respond by circling one of the corresponding numbers presented in standard Likert 

scale format (i.e. 1= Strongly agree, 2= Agree, 3= Neutral, 4= Disagree, 5= Strongly 

disagree).   These items derive loosely from similar scales used in treatment acceptability 

research (Witt & Martens, 1983) but were constructed by the author for this study.  There 

are no data on the reliability or validity of this scale.

Dependent Measures

For the single-skill mathematics computation probe and the multiple-skill 

mathematics computation probes, the number of correctly written digits during a two-



26

minute interval served as the measures of students’ performance (Shinn, 1989).  Both 

probes were scored in terms of the number of correctly written digits following methods 

described by Shinn (1998).  For the multiple-skill mathematics computation probes and 

the maze reading passages, the median score of the three probes were used as the 

student’s score.  For the mathematical reasoning probes and the big ideas probe, the 

number of items answered correctly served as the measures of students’ performance.  

For the CBM Maze reading passages, the number of correctly selected words was 

counted as the measure (Shinn, 1998).  The SDMT-4 was hand-scored by a trained school 

psychology doctoral student.  The total score of the Concepts and Application area and 

the total score of the Computation area were used from the SDMT-4.

Procedures

This study was completed over approximately a two-week period.  Three CBM 

probes, the mathematical reasoning probe, the Big Ideas probe and a criterion-referenced 

assessment were administered to each student.  Every assessment was group-

administered in each participating classroom.  Before the administration of the first 

assessment, the current experimenters handed the teacher a copy of the social validity 

questionnaire and asked that it be completed while the students were being assessed.  The 

first assessment in all cases was the Stanford Diagnostic Mathematics Test, fourth 

edition.  Three school psychology graduate students administered the SDMT-4, according 

to the procedures described in the administration manual.  The remainder of the five 

probes was administered in a randomized order in an attempt to avoid order effects.  

Either two to three probes were administered in one day with the reminder being 

administered on the following day for each class.  Procedures similar to those described 
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by Shinn (1989) guided the administration of the SSMCP (Appendix C).  The 

administrative procedure for the MSMCPs was identical to that of the SSMCP.  Two 

minutes were provided to complete each probe.  

The mathematical reasoning probe and the Big Ideas probe were administered in a 

similar manner as the two previous math assessments with one exception.  That is, the 

students were allowed to complete the probes with no time limit.  The students turned 

their probe over when completed.  The Maze reading passages were administered in 

accordance with procedures described by Shinn (1998).  Two minutes were provided to 

complete each probe, and the probes were collected after every assessment.  Each one of 

the Maze probes was administered separately at one testing session.  Finally, the teachers 

turned in the completed rating of the assessments prior to seeing the results.  

Interrater Agreement

Interrater agreement were determined by having two independent persons score 

approximately 20% of each of the assessments used including the math CBM 

assessments, mathematics reasoning probe, the Big Ideas probe, maze reading passages 

and the SDMT-4.  Interrater reliability was calculated as the percentage agreement for 

individual items on math and reading probes, and was calculated by counting the number 

of agreements and number of disagreements for all attempted items, dividing the number 

of agreements by the number of agreements plus disagreements, and multiplying the 

resulting number by 100%. Average interrater agreement for the assessments was 99.65% 

(99.15-100%). 
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DATA COLLECTION AND ANALYSIS

To investigate the effect of fluency on component behavior on mathematics 

achievement, four separate analyses were conducted.  Pearson product-moment 

correlation coefficients were calculated between three alternative forms of multiple-skill 

mathematics computation probes and three alternative forms of Maze reading passages in 

order to examine alternate-form reliability of the probes.  Subsequently, bi-variate 

correlation coefficients were calculated between the criterion variable (i.e. Stanford 

Diagnostic Mathematics Test, Fourth Edition) and multiple predictor variables (SSMCP, 

MSMCP, Mathematical Reasoning Probe, Big Ideas Probe and Maze).  Using the 

Bonferroni control for increased Type I errors with six variables, a p-value of less than 

.008 (.05/6 = .008) was required for significance.  Following the correlational analyses, a 

test of significance of the difference between dependent correlation coefficients was 

conducted for each grade to evaluate if the correlation coefficients between particular 

predictor variables and the SDMT- 4 are significantly higher or lower than other predictor 

variables.  Multiple regression analysis was used to identify which predictor variables 

most effectively predicted student’s mathematical comprehension.  Median scores were 

being included for the MSMCP and the Maze probes during each analysis.   

However, in order to acquire a compelling result, multiple regression analyses 

require a minimum of 40 participants per predictor variable (Cohen & Cohen, 1983; 

Tabachnick & Fidell, 1996).  There were six variables total, and 140 students participated 

in the study.  Not having enough participants to run the analysis at once, the predictor 

variables were eliminated by running several single-regression analyses.  First, as both 

are representative of basic computational tasks, an analysis between the SSMCP and the 
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MSMCP median was run to identify the stronger predictor.  Subsequently, an analysis 

between the mathematical reasoning probe and the Big Ideas probe was run.  Each probe  

represented non-computational tasks from different approaches.  Results of the two single 

regression analyses indicated that the MSMCP and the Big Ideas probes were the stronger 

predictor variables in relation to the competing variables.  Finally, the scores from the 

Maze probes were included in the multiple regression equation as one variable because 

the Maze was the single variable that measured students’ reading performance.  
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RESULTS

Alternate-form Reliability of the Probes

The purpose of the first set of analyses was to examine the alternate-form 

reliability of the three mathematics computation probes and three Maze reading passages.  

In order to accomplish this, Pearson product-moment correlation coefficients were 

calculated.  

The alternate-form reliability between MSMCP 1 and MSMCP 2, MSMCP2 and 

MSMCP 3, and MSMCP 1 and MSMCP 3 equaled .771, .794, and .805, respectively.  

Likewise, the alternate-form reliability between Maze 1 and Maze 2, Maze 2 and Maze 3, 

and Maze 1 and Maze 3 were .762, .835, and .663, respectively.  Each of these correlation 

coefficients was significant at the .01 level for a two-tailed test.  Given these results, the 

median scores for both MSMCPs and Mazes were used in subsequent bi-variate 

correlation and multiple regression analyses. 

Criterion-related Validity

  The purpose of the second set of analyses was to investigate the criterion-related 

validity of the various predictor variables of interest in the study (i.e., SSMCP, MSMCP 

median, Mathematical Reasoning Probe, the Big Ideas probe and Maze median) with 

respect to the criterion variable (i.e., SDMT-4).   The correlation coefficients between the 

SDMT-4 and the predictor variables are presented in Table 1.  Most of the correlation 

coefficients were significant at the .008 level.  Consistent with previous studies 

(Clements, 1980; Clarkson, 1983; Helwig et al., 1999; Helwig et al., 2000), Maze reading 

passages correlated moderately with the SDMT. (r =.522, p< .008).   
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Table 1

Correlations Between the SDMT- 4 and the predictor variables

Grade SSMCP MSMCP Math
reasoning

Big Ideas Maze 

2 .645*** .609*** .348* .532*** .681***
3 .332 .487** .601*** .845*** .621***
4 .648*** .590*** .605*** .606*** .619***
N .500*** .546*** .474*** .507*** .522***
* significant at the .05 level.  ** significant at the .01 level.  *** significant at the .008 
level under Bonferroni correction.
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Further, the predictor variables were rank ordered, and a test of significance of the 

difference between dependent correlation coefficients (Glass & Stanley, 1970) was 

conducted.  For the second grade, the analysis revealed that the correlation coefficient for 

the SSMCP (r = .645) was significantly higher than the correlation coefficient for the 

mathematical reasoning probe (r = .348, t(43) = 2.51, p < .01).  The same significant 

difference was found between the MSMCP (r = .609) and the mathematical reasoning 

probe (t(43) = 1.92, p < .05).  There was no significant difference between other variables.  

For the third grade, a significant difference was found between the Big Ideas probe and 

every other probe.  That is, the correlation coefficient for the Big Ideas probe (r = .845) 

was significantly higher than the correlation coefficient for the maze (r = .621, t(26) = 

2.03, p < .05), mathematical reasoning probe (r = .601, t(26) = 2.28, p < .05), MSMCP (r 

= .487, t(26) = 2.55, p < .05), and SSMCP (r = .332, t(26) = .5.60, p < .01).  No 

significant difference was found between other variables.  For the fourth grade and all 

grades total, however, no significant difference between the correlation coefficients was

found.  

In order to determine how much of the variance in the SDMT- 4 could be 

explained by the predictor variables, in the next set of analyses, multiple regression was 

used.  Results of stepwise regression using the MSMCP, the Big Ideas probe, and the 

Maze reading passage score as independent variables showed that the MSMCP, entered 

first in the equation and accounted for 54.7 percent of the total variance in the SDMT- 4.  

The Big Ideas probe was entered second into the equation and, together with the 

MSMCP, accounted for 64.4 percent of the variance.  Entering the Maze reading passage

score as the third variable, the predictor variables accounted for 66.1 percent of the 
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variance in the SDMT- 4 for all of the participants in the study. No further variables 

entered the equation.  

Results of the teacher perceptions of the probes showed that the teachers were 

satisfied with the probes.  Mean rating for the first, second and third question was 2.17, 

2.08 and 2.42, respectively.  
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DISCUSSION

The purpose of the study was to investigate whether fluency in component skills 

was associated with overall proficiency or “comprehension” in mathematics. The current 

study attempted to measure mathematical comprehension using the SDMT-4.  It was 

hypothesized that students who were more successful (i.e., fluent) in their performance 

on mathematical component skills would also have better comprehension of more 

difficult mathematical concepts and would, therefore, score well on a general 

mathematics achievement test.  It was further anticipated that students’ measures of 

fluency on component skills would have a stronger relationship with an omnibus math 

achievement test than would student performance on a test of mathematical reasoning 

derived from constructivist theory.   In order to examine these relationships, bi-variate 

correlation coefficients and multiple regression analyses were conducted.  

The results indicated that those students who performed well on component 

activities (SSMCP and MSMCP) also performed well on the comprehensive proficiency 

activities (i.e. SDMT-4).  Correlation coefficients between the SDMT- 4 and the 

mathematics reasoning probe while statistically significant were not as high as between 

the component activities (SSMCP and MSMCP) and the SDMT- 4 in the second grade.  

Interestingly, in third grade, the big ideas probe had the strongest association with the 

SDMT- 4.  This correlation was significantly higher than for the other independent 

measures.  Consistent with previous studies (Clements, 1980; Clarkson, 1983; Helwig et 

al., 1999; Helwig et al., 2000), Maze reading passages correlated moderately with the 

SDMT- 4, adding further evidence that a reading skill is highly related to students 

performing some higher order mathematics problems.
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The current study is supportive of other studies such as that of Thurber, Shinn, 

and Smolkowski’s (2002) who found promising evidence for the validity of CBM in 

predicting more global mathematical assessments. Johnson and Layng (1992) affirm that

component skills and complex skills are highly related.  The asserted that it is the 

accumulation of weak component skills that makes learning more challenging.  A number 

of validity studies in the area of reading led researchers to conclude that passage reading 

was a valid measure of a student’s reading skill.  This has not been accomplished in the 

area of mathematics; however, the current study provides an additional step in 

establishing the relationship.   

The Big Ideas probe was a strong predictor of students’ overall proficiency in 

mathematics, especially in the third grade.  It appears puzzling at first why behaviorists 

such as Harniss, Stein, and Carnine (2002) emphasize “big ideas” when other 

behaviorists stress the importance of component skills.  Researchers promoting big ideas 

affirm that educators must select goals that address important concepts and skills, and an 

analysis based on big ideas reduces the number of formulas students must learn (Harniss, 

Stein, & Carnine, 2002).  A student, who becomes fluent in component skills or big ideas, 

when presented with a new environmental requirement, can recombine the component

skills in new ways that correspond to the higher level complex skills.  Researchers 

stressed that increasing the speed of performance improves the range of a student’s 

potential performance capacity, enabling them to put greater effort in solving higher order 

activities (Johnson & Layng, 1992, 1993; Binder, 1993; Helwig et al., 1999).  

Conversely, if a student is not fluent in those tasks, less performance capacity is available 

for him or her to perform activities that are more complex and, therefore, the overall 
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performance of the student would be poor.  For example, in reading, if a task consumes 

too much performance capacity, the extra effort taken in the component skills will detract 

from comprehension at sentence, paragraph, and text levels (Tan & Nicholson, 1997).  

Big ideas and component skills are therefore highly related and are both consistent with a 

behavioral approach.    

Although the current study was successful and provided a starting point for future 

research, several limitations should be noted.  Initially, although the standardized 

assessment (i.e., SDMT- 4) used in the study was adequate for the purpose of the 

research, it may be beneficial for future studies to use other standardized assessments as 

well in order to further explicate the relationship between fluency and comprehension in 

mathematics.  Additionally, the mathematical reasoning probe, which was generated

using items that reflect a constructivist’s view, and the Big Ideas probe administered in 

the current study could have been improved to better measure what truly represented their 

approach by including every content area and the organizing principle in the probe.  

Another limitation concerning generating mathematical reasoning probe is the possible 

difficulty in replicating the construction of the probe.  Furthermore, a sample size large 

enough for multiple regression analyses of each grade would have allowed detailed 

analyses within each grade. 

Future researchers may wish to examine whether an intervention to enhance 

component skills may increase the mathematical comprehension.  The present study is 

merely correlational.  Although correlational studies provide practical information, they 

do not allow causal interpretations.  Demonstrating the effectiveness of a fluency 

building intervention in component skills in strengthening students’ mathematics 
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comprehension would unveil the causal relationship between fluency and comprehension 

in mathematics.  If a causal relationship could be established between the two, this may 

show the beneficial effect of intervention on mathematics comprehension for students 

performing poorly in the mathematics component skills.  If the benefits of fluency 

training can be documented experimentally, this may lead to greater use by educators 

(Bucklin, Dickinson, and Brethower, 2000).  



38

REFERENCES

American Federation of Teachers. (n.d.).  TIMSS: NCES findings/eighth grade
Achievement results, November 20, 1996.  Retrieved June 20, 2003 from
http://www.aft.org/timss/findings.htm

Anderson, J.R., Reder, L.M., & Herbert, A.S. (n.d.).  Retrieved October 20, 2003, from
http://mathematicallycorrect.com/intro.htm#doyou

Binder, C. (1993).  Behavioral fluency: A new paradigm.  Educational Technology,
33(10), 8-14.

Binder, C. (2002).  Building fluent performance in a customer call center.  Performance
Improvement, 41(2), 29-39.

Binder, C. (2003).  Doesn’t everybody need fluency?  Performance Improvement, 42(3),
14-20.

Burns, M.K., Tucker, J.A., Hauser, A., Thelen, R.L., Holmes, K.J., & White, K. (2002).  
Minimum reading fluency rate necessary for comprehension: A potential criterion 
for curriculum-based assessments.  Assessment for Effective Intervention, 28(1), 
1-7.  

Cheney, L. (1997).  Dialogue: creative math, or just 'fuzzy math'?; once again, basic skills
fall prey to a fad [Electronic version].  The New York Times, late edition, 15.

Clarkson, P. (1983).  Types of errors made by Papua New Guinean students.  Educational
Studies in Mathematics, 11, 1-21.

Clayton, M. (May, 2000).  Retrieved October 22, 2003, from
http://www.csmonitor.com/sections/learning/mathmelt

Clements, M.A. (1980).  Analyzing children’s errors on written mathematical tasks.  
Educational Studies in Mathematics, 11, 1-21.

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the 
behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Connelly, V., Johnson, R., & Thompson, G.B. (2001).  The effect of phonics instruction
on the reading comprehension of beginning readers.  Reading and Writing: An 
Interdisciplinary Journal, 14, 423-457.

Deno, S.L. (1986).  Formative evaluation of individual student programs: A new role for
school psychologist.  School Psychology Review, 15, 358-374.

http://www.aft.org/timss/findings.htm
http://mathematicallycorrect.com/intro.htm
http://www.csmonitor.com/sections/learning/mathmelt


39

Deno, S. L., Mirkin, P.K., & Chiang, B. (1982).  Identifying valid measures of reading.  
Exceptional Children, 49, 36-47.

Engen, L., & Hoien, T. (2002).  Phonological skills and reading comprehension.  Reading
and Writing: An Interdisciplinary Journal, 15, 613-631.

Fuchs, L. S., Fuchs, D., & Deno, S. L. (1982).  Reliability and validity of curriculum-
based informal reading inventories.  Reading Research Quarterly, 18, 6-25.

Fuchs, L. S., & Fuchs, D. (1990).  Relations among the Reading Comprehension subtest
of the Stanford Achievement Test and maze, recall, question-answering, and 
fluency measures.  Unpublished manuscript.

Fuchs, L. S. & Fuchs, D. (1992).  Identifying a measure for monitoring student reading 
progress.  School Psychology Review, 21(1), 45-58.

Fuson, K. C., Carroll, W. M., & Drueck, J. V.  (2000).  Achievement results for second
and third graders using the Standards-based curriculum Everyday Mathematics.  
Journal for Research in Mathematics Education, 31(3), 277-295.

Gardner, III, R., Cartledge, G., Seidl, B., Woolsey, M. L., Schley, G. S. and Utley, C. A.
(2001).  Mt. Olivet after-school program: Peer-mediated interventions for at-risk 
students.  Remedial and Special Education, 22(1), 22-33.

Graham, S., Harris, K.R., & Chorzempa, B.F. (2002).  Contribution of spelling instruction
to the spelling, writing, and reading of poor spellers.  Journal of Educational 
Psychology, 94(4), 669-686.

Haring, N.G., Lovitt, T.C., Eaton, M.D., & Hansen, C.L. (1978).  The fourth R: Research
in the classroom.  Columbus, OH: Charles E. Merrill Publishing Co.  

Harniss, M. K., Stein, M., & Carnine, D.  (2002). Promoting mathematics achievement.  
In M. A. Shinn, H. M. Walker, & G. Stoner (Eds.), Interventions for academic and 
behavior problems II: Preventive and remedial approaches (pp. 571-587).  
Bethesda, MD: National Association of School Psychologists.

Helwig, R., Heath, B., & Tindal, G. (2000). Predicting middle school mathematics
achievement using practical and efficient measurement instruments.  Retrieved 
October 23, 2003, from University of Oregon, Behavioral Research and Teaching 
Web site: http://brt.uoregon.edu/pub/lsassess.html

Hintze, J.M., Christ, T.J., & Keller, L.A. (2002).  The generalizability of CBM survey-
level mathematics assessments: Just how many samples do we need?  School 
Psychology Review, 31(4), 514-528.

http://brt.uoregon.edu/pub/lsassess.html


40

Impara, J.C., & Plake, B.S. (Eds.). (1998).  The thirteenth mental measurements 
yearbook.  Lincoln, NE: Buros Institute of Mental Measurement.

Jenkins, J.R.& Jewell, M. (1993).  Examining the validity of two measures for formative
teaching: Reading aloud and maze.  Exceptional Children, 59(5), 421-432.

Johnson, K.R. (1991).  About Morningside Academy.  Future Choices, 3, 64-66.

Johnson, K.R., & Layng, T.V.J. (1992).  Breaking the structuralist barrier: Literacy and
numeracy with fluency.  American Psychologist, 47(11), 1475-1490.

Johnson, K.R., & Layng, T.V.J. (1993).  The Morningside model of generative
instruction.  In R. Gardner, D. Sainato, J.O. Cooper, T.E. Heron, W.L. Heward, 
and J.W. Eshleman (Ed.), Behavior analysis in education: Focus on measurably 
superior instruction.  Pacific Grove, CA: Brooks/Cole Publishing Co.

Kameenui, E.J., & Carnine, D.W. (1998).  Effective teaching strategies that accommodate
diverse learners.  Upper Saddle River, New Jersey: Merrill.

Kamii, C. (1991)  Toward autonomy: The importance of critical thinking and choice
making.  School Psychology Review, 20(3), 382-288.

Kamii, C., Lewis, B. A., & Livingston, S. J.  (1993).  Primary arithmetic: Children
inventing their own procedures.  Arithmetic Teacher, 41(4), 200-203.

Koretz, D., McCaffrey, D., & Sullivan, T. (2001, September).  Predicting variations in
Mathematics performance in four countries using TIMSS — project update.  
Education Policy Analysis Archives 9(34).  Retrieved from 
http://epaa.asu.edu/epaa/v9n34

Kuhn, M.R., & Stahl, S.A. (2003).  Fluency: A review of developmental and remedial
practices.  Journal of Educational Psychology, 95(1), 3-21.

MacArthur, C.A., & Haynes, J.B. (1995).  Student assistant for learning from text
(SALT): A hypermedia reading aid.  Journal of Learning Disabilities, 28, 150-
159.

Marston, D. (1989).  A curriculum-based measurement approach to assessing academic
performance: What is it and why do it.  In M.Shinn (Ed.), Curriculum-based 
measurement: Assessing special children (pp. 18-78).  New York: Guilford.

Micro Power & Light Co. (2000).  Readability Calculations. [Computer software].  
Retrieved from http://www.micropowerandlight.com/rd.html

http://epaa.asu.edu/epaa/v9n34
http://www.micropowerandlight.com/rd.html


41

National Center for Education Statistics (n.d.). Trends in international mathematics and 
science study.  Retrieved June 20, 2003 from       
http://nces.ed.gov/timss/results.asp

National Council of Teachers of Mathematics (2000).  Retrieved June 20, 2003 from
http://standards.nctm.org

Piaget, J. (1973).  To understand is to invent: The uture of education.  New York: Viking
(original work published in 1948).

Schoolhouse Technologies Inc. (2003).  Mathematics Worksheet Factory Deluxe (Version
3.0) [Computer software].  Retrieved from 
http://www.shcoolhousetechnologies.com

Shinn, M.R. (Ed.). (1989). Curriculum-based measurement: Assessing special children.  
New York: Gilford.  

Shinn, M.R. (Ed.) (1998).  Advanced applications of curriculum-based measurement.  
New York: Gilford.

Shinn, M.R., & Marston, D. (1985).  Differentiating mildly handicapped, low-achieving,
and regular education students: A curriculum-based approach.  Remedial and 
Special Education, 6(2), 31-38.

Shinn, M.R., Good, R.H., Knutson, N., Tilly, W.D., & Collins, V.L. (1992).  Curriculum-
based measurement of oral reading fluency: A confirmatory analysis of its relation 
to reading.  School Psychology Review, 21, 459-479.

Tabachnick, B. G., & Fidell, L. S. (1996). Using Multivariate Statistics. New York: 
Harper Collins.

Tan, A., & Nicholson, T. (1997).  Flashcards revisited: Training poor readers to read 
words faster improves their comprehension of text.  Journal of Educational 
Psychology, 89, 276-288.

Thurber, R.S., Shinn, M.R., & Smolkowski, K. (2002).  What is measured in mathematics
tests?  construct validity of curriculum-based mathematics measures.  School 
Psychology Review, 31(4), 498-513.

What is changing in Math Education? (n.d.)  Retrieved October 20, 2003, from
http://www.mathematicallycorrect.com/what.htm

Witt, J. C., & Martens, B. K. (1983). Assessing the acceptability of behavioral 
interventions used in classrooms. Psychology in the Schools, 20, 510-517.

http://nces.ed.gov/timss/results.asp
http://standards.nctm.org/
http://www.shcoolhousetechnologies.com/
http://www.mathematicallycorrect.com/what.htm


42

APPENDIX  A

DEFINITIONS OF MATHEMATICAL CONTENT AREAS CRUCIAL FOR GRADE 2

Number and Operations.  Understand numbers, ways of representing numbers, 

relationships among numbers, and number systems.  Understand meanings of operations 

and how they relate to one another.  Compute fluently and make reasonable estimates.  

Geometry.  Analyze characteristics and properties of two- and three-dimensional 

geometric shapes and develop mathematical arguments about geometric relationships.  

Specify locations and describe spatial relationships using coordinate geometry and other 

representational systems.  Apply transformations and use symmetry to analyze 

mathematical situations.  Use visualization, spatial reasoning, and geometric modeling to 

solve problems.  
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APPENDIX  B

DEFINITIONS OF MATHEMATICAL THEMES CRUCIAL FOR GRADE 3-5

Multiplicative thinking.  Develops knowledge that students build on as they move 

into the middle grades, where he emphasis is on proportional reasoning.

Algebra /Equivalence.  Understand patterns, relations, and functions.  Represent 

and analyze mathematical situations and structures using algebraic symbols.  Use 

mathematical models to represent and understand quantitative relationships.  Analyze 

change in various contexts. 
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APPENDIX C

ADMINISTARATION PROCEDURES FOR 
MATH CURRICULUM-BASED MEASUREMENTS

1) Note to the class whether single-skill or multiple-skill mathematics computation 

probes are to be administered.

2) Say to the students: “This is a math quiz.”

3) For single-skill probes say: “All of the problems are [addition, subtraction, 

multiplication or division] facts.”

For multiple-skill probes say: “There are several types of problems on the sheet.  

Some are addition, some are subtraction, some are multiplication, and some are 

division [as appropriate].  Look at each problem carefully before you answer it.”

4) “When I say ‘start’, turn them over and begin answering the problems.  Start on 

the first problem on the left on the top row [point].  Work across and then go to 

the next row.  If you can’t answer the problem make an ‘X’ on it and to the next 

one.  When I tell you to begin, turn the sheet over and start answering the 

problems.  When I tell you to stop, put your pencil down.  You will have two 

minutes to complete as many problems as you can.  Are there any questions?”

5) Say “Start.”

6) Monitor student performance so that students work the problems in rows and do 

not skip around or answer only the easy problems.

7) After 2 minutes, say “Stop”, and start collecting the probes. 
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