
Vibration

For mechanical oscillations in the machining context,
see Machining vibrations.
For other uses, see Vibration (disambiguation).

Vibration (from Latin vibrationem “shaking, brandish-
ing”) is a mechanical phenomenon whereby oscillations
occur about an equilibrium point. The oscillations may
be periodic such as the motion of a pendulum or random
such as the movement of a tire on a gravel road.
Vibration is occasionally “desirable”. For example, the
motion of a tuning fork, the reed in a woodwind instru-
ment or harmonica, or mobile phones or the cone of a
loudspeaker is desirable vibration, necessary for the cor-
rect functioning of the various devices.
More often, vibration is undesirable, wasting energy and
creating unwanted sound – noise. For example, the vi-
brational motions of engines, electric motors, or any
mechanical device in operation are typically unwanted.
Such vibrations can be caused by imbalances in the rotat-
ing parts, uneven friction, the meshing of gear teeth, etc.
Careful designs usually minimize unwanted vibrations.
The study of sound and vibration are closely related.
Sound, or “pressure waves", are generated by vibrating
structures (e.g. vocal cords); these pressure waves can
also induce the vibration of structures (e.g. ear drum).
Hence, when trying to reduce noise it is often a problem
in trying to reduce vibration.

One of the possible modes of vibration of a circular drum (see
other modes).

1 Types of vibration

Free vibration occurs when a mechanical system is set
off with an initial input and then allowed to vibrate freely.
Examples of this type of vibration are pulling a child back
on a swing and then letting go or hitting a tuning fork and

Car Suspension: designing vibration control is undertaken as part
of acoustic, automotive or mechanical engineering.

letting it ring. The mechanical system will then vibrate at
one or more of its "natural frequency" and damp down to
zero.
Forced vibrations is when a time-varying disturbance
(load, displacement or velocity) is applied to a mechan-
ical system. The disturbance can be a periodic, steady-
state input, a transient input, or a random input. The pe-
riodic input can be a harmonic or a non-harmonic dis-
turbance. Examples of these types of vibration include
a shaking washing machine due to an imbalance, trans-
portation vibration (caused by truck engine, springs, road,
etc.), or the vibration of a building during an earthquake.
For linear systems, the frequency of the steady-state vi-
bration response resulting from the application of a peri-
odic, harmonic input is equal to the frequency of the ap-
plied force or motion, with the response magnitude being
dependent on the actual mechanical system.
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2 Vibration testing

Vibration testing is accomplished by introducing a forc-
ing function into a structure, usually with some type of
shaker. Alternately, a DUT (device under test) is attached
to the “table” of a shaker. Vibration testing is performed
to examine the response of a device under test (DUT) to
a defined vibration environment. The measured response
may be fatigue life, resonant frequencies or squeak and
rattle sound output (NVH). Squeak and rattle testing is
performed with a special type of quiet shaker that pro-
duces very low sound levels while under operation.
For relatively low frequency forcing, servohydraulic
(electrohydraulic) shakers are used. For higher frequen-
cies, electrodynamic shakers are used. Generally, one or
more “input” or “control” points located on the DUT-side
of a fixture is kept at a specified acceleration.[1] Other “re-
sponse” points experience maximum vibration level (res-
onance) or minimum vibration level (anti-resonance). It
is often desirable to achieve anti-resonance in order to
keep a system from becoming too noisy, or to reduce
strain on certain parts of a system due to vibration modes
caused by specific frequencies of vibration.[2]

The most common types of vibration testing services
conducted by vibration test labs are Sinusoidal and
Random.[3][4][5] Sine (one-frequency-at-a-time) tests are
performed to survey the structural response of the device
under test (DUT). A random (all frequencies at once) test
is generally considered to more closely replicate a real
world environment, such as road inputs to a moving au-
tomobile.
Most vibration testing is conducted in a 'single DUT axis’
at a time, even though most real-world vibration occurs in
various axes simultaneously. MIL-STD-810G, released
in late 2008, Test Method 527, calls for multiple exciter
testing. The vibration test fixture which is used to attach
the DUT to the shaker table must be designed for the fre-
quency range of the vibration test spectrum. Generally
for smaller fixtures and lower frequency ranges, the de-
signer targets a fixture design which is free of resonances
in the test frequency range. This becomes more difficult
as the DUT gets larger and as the test frequency increases,
and in these cases multi-point control strategies can be
employed to mitigate some of the resonances which may
be present in the future.
Devices specifically designed to trace or record vibrations
are called vibroscopes.

3 Vibration analysis

Vibration Analysis (VA), applied in an industrial or
maintenance environment aims to reduce maintenance
costs and equipment downtime by detecting equipment
faults.[6][7] VA is a key component of a Condition Mon-
itoring (CM) program, and is often referred to as Pre-

dictive Maintenance (PdM).[8] Most commonly VA is
used to detect faults in rotating equipment (Fans, Motors,
Pumps, and Gearboxes etc.) such as Unbalance, Mis-
alignment, rolling element bearing faults and resonance
conditions.
VA can use the units of Displacement, Velocity and Ac-
celeration displayed as a Time Waveform (TWF), but
most commonly the spectrum is used, derived from a Fast
Fourier Transform of the TWF. The vibration spectrum
provides important frequency information that can pin-
point the faulty component.
The fundamentals of vibration analysis can be understood
by studying the simple mass–spring–damper model. In-
deed, even a complex structure such as an automobile
body can be modeled as a “summation” of simple mass–
spring–damper models. The mass–spring–damper model
is an example of a simple harmonic oscillator. The math-
ematics used to describe its behavior is identical to other
simple harmonic oscillators such as the RLC circuit.
Note: In this article the step by step mathematical deriva-
tions will not be included, but will focus on the major
equations and concepts in vibration analysis. Please re-
fer to the references at the end of the article for detailed
derivations.

3.1 Free vibration without damping

m

k

x

Simple Mass Spring Model

To start the investigation of the mass–spring–damper as-
sume the damping is negligible and that there is no ex-
ternal force applied to the mass (i.e. free vibration). The
force applied to the mass by the spring is proportional to
the amount the spring is stretched “x” (we will assume
the spring is already compressed due to the weight of the
mass). The proportionality constant, k, is the stiffness of
the spring and has units of force/distance (e.g. lbf/in or
N/m). The negative sign indicates that the force is always
opposing the motion of the mass attached to it:

Fs = −kx.
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The force generated by the mass is proportional to the
acceleration of the mass as given by Newton’s second law
of motion :

Σ F = ma = mẍ = m
d2x

dt2
.

The sum of the forces on the mass then generates this
ordinary differential equation: mẍ+ kx = 0.

Assuming that the initiation of vibration begins by
stretching the spring by the distance of A and releasing,
the solution to the above equation that describes the mo-
tion of mass is:

x(t) = A cos(2πfnt).

This solution says that it will oscillate with simple har-
monic motion that has an amplitude of A and a frequency
of fn. The number fn is called the undamped natural
frequency. For the simple mass–spring system, fn is de-
fined as:

fn =
1

2π

√
k

m
.

Note: angular frequency ω (ω=2 π f) with the units of
radians per second is often used in equations because
it simplifies the equations, but is normally converted to
ordinary frequency (units of Hz or equivalently cycles per
second) when stating the frequency of a system. If the
mass and stiffness of the system is known the frequency
at which the system will vibrate once it is set in motion by
an initial disturbance can be determined using the above
stated formula. Every vibrating system has one or more
natural frequencies that it will vibrate at once it is dis-
turbed. This simple relation can be used to understand
in general what will happen to a more complex system
once we add mass or stiffness. For example, the above
formula explains why when a car or truck is fully loaded
the suspension will feel ″softer″ than unloaded because
the mass has increased and therefore reduced the natural
frequency of the system.

3.1.1 What causes the system to vibrate: from con-
servation of energy point of view

Vibrational motion could be understood in terms of
conservation of energy. In the above example the spring
has been extended by a value of x and therefore some
potential energy ( 1

2kx
2 ) is stored in the spring. Once

released, the spring tends to return to its un-stretched
state (which is the minimum potential energy state) and
in the process accelerates the mass. At the point where
the spring has reached its un-stretched state all the po-
tential energy that we supplied by stretching it has been

Simple harmonic motion of the mass–spring system
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transformed into kinetic energy ( 1
2mv

2 ). The mass
then begins to decelerate because it is now compressing
the spring and in the process transferring the kinetic en-
ergy back to its potential. Thus oscillation of the spring
amounts to the transferring back and forth of the kinetic
energy into potential energy. In this simple model the
mass will continue to oscillate forever at the same mag-
nitude, but in a real system there is always damping that
dissipates the energy, eventually bringing it to rest.

3.2 Free vibration with damping

m

k

x

c

Mass Spring Damper Model

When a “viscous” damper is added to the model that out-
puts a force that is proportional to the velocity of the
mass. The damping is called viscous because it models
the effects of a fluid within an object. The proportion-
ality constant c is called the damping coefficient and has
units of Force over velocity (lbf s/ in or N s/m).

Fd = −cv = −cẋ = −cdx
dt
.

Summing the forces on the mass results in the following
ordinary differential equation:

mẍ+ cẋ+ kx = 0.

The solution to this equation depends on the amount of
damping. If the damping is small enough the system will
still vibrate, but eventually, over time, will stop vibrating.
This case is called underdamping – this case is of most
interest in vibration analysis. If the damping is increased
just to the point where the system no longer oscillates the
point of critical damping is reached (if the damping is
increased past critical damping the system is called over-
damped). The value that the damping coefficient needs
to reach for critical damping in the mass spring damper
model is:

cc = 2
√
km.

To characterize the amount of damping in a system a ra-
tio called the damping ratio (also known as damping fac-
tor and % critical damping) is used. This damping ratio
is just a ratio of the actual damping over the amount of
damping required to reach critical damping. The formula
for the damping ratio ( ζ ) of the mass spring damper
model is:

ζ =
c

2
√
km

.

For example, metal structures (e.g. airplane fuselage, en-
gine crankshaft) will have damping factors less than 0.05
while automotive suspensions in the range of 0.2–0.3.
The solution to the underdamped system for the mass
spring damper model is the following:

x(t) = Xe−ζωnt cos(
√
1− ζ2ωnt− ϕ), ωn = 2πfn.

The value of X, the initial magnitude, and ϕ, the

Free vibration with 0.1 and 0.3 damping ratio

phase shift, are determined by the amount the spring is
stretched. The formulas for these values can be found in
the references.
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3.2.1 Damped and undamped natural frequencies

The major points to note from the solution are the ex-
ponential term and the cosine function. The exponential
term defines how quickly the system “damps” down – the
larger the damping ratio, the quicker it damps to zero.
The cosine function is the oscillating portion of the so-
lution, but the frequency of the oscillations is different
from the undamped case.
The frequency in this case is called the “damped natural
frequency”, fd, and is related to the undamped natural
frequency by the following formula:

fd = fn
√
1− ζ2.

The damped natural frequency is less than the undamped
natural frequency, but for many practical cases the damp-
ing ratio is relatively small and hence the difference is
negligible. Therefore, the damped and undamped de-
scription are often dropped when stating the natural fre-
quency (e.g. with 0.1 damping ratio, the damped natural
frequency is only 1% less than the undamped).
The plots to the side present how 0.1 and 0.3 damping
ratios effect how the system will “ring” down over time.
What is often done in practice is to experimentally mea-
sure the free vibration after an impact (for example by a
hammer) and then determine the natural frequency of the
system by measuring the rate of oscillation as well as the
damping ratio by measuring the rate of decay. The nat-
ural frequency and damping ratio are not only important
in free vibration, but also characterize how a system will
behave under forced vibration.

3.3 Forced vibration with damping

The behavior of the spring mass damper model varies
with the addition of a harmonic force. A force of this
type could, for example, be generated by a rotating im-
balance.

F = F0 sin (2πft).
Summing the forces on the mass results in the following
ordinary differential equation:

mẍ+ cẋ+ kx = F0 sin (2πft).
The steady state solution of this problem can be written
as:

x(t) = X sin (2πft+ ϕ).

The result states that the mass will oscillate at the same
frequency, f, of the applied force, but with a phase shift
ϕ.

The amplitude of the vibration “X” is defined by the fol-
lowing formula.

X =
F0

k

1√
(1− r2)2 + (2ζr)2

.

Where “r” is defined as the ratio of the harmonic force
frequency over the undamped natural frequency of the
mass–spring–damper model.

r =
f

fn
.

The phase shift, ϕ, is defined by the following formula.

ϕ = arctan
(

2ζr

1− r2

)
.

The plot of these functions, called “the frequency re-
sponse of the system”, presents one of the most impor-
tant features in forced vibration. In a lightly damped
system when the forcing frequency nears the natural fre-
quency ( r ≈ 1 ) the amplitude of the vibration can get
extremely high. This phenomenon is called resonance
(subsequently the natural frequency of a system is often
referred to as the resonant frequency). In rotor bearing
systems any rotational speed that excites a resonant fre-
quency is referred to as a critical speed.
If resonance occurs in a mechanical system it can be very
harmful – leading to eventual failure of the system. Con-
sequently, one of the major reasons for vibration analysis
is to predict when this type of resonance may occur and
then to determine what steps to take to prevent it from
occurring. As the amplitude plot shows, adding damping
can significantly reduce the magnitude of the vibration.
Also, the magnitude can be reduced if the natural fre-
quency can be shifted away from the forcing frequency
by changing the stiffness or mass of the system. If the
system cannot be changed, perhaps the forcing frequency
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can be shifted (for example, changing the speed of the
machine generating the force).
The following are some other points in regards to the
forced vibration shown in the frequency response plots.

• At a given frequency ratio, the amplitude of the vi-
bration, X, is directly proportional to the amplitude
of the force F0 (e.g. if you double the force, the
vibration doubles)

• With little or no damping, the vibration is in phase
with the forcing frequency when the frequency ratio
r < 1 and 180 degrees out of phase when the fre-
quency ratio r > 1

• When r ≪ 1 the amplitude is just the deflection of
the spring under the static force F0. This deflection
is called the static deflection δst.Hence, when r≪1
the effects of the damper and the mass are minimal.

• When r ≫ 1 the amplitude of the vibration is actu-
ally less than the static deflection δst. In this region
the force generated by the mass (F = ma) is domi-
nating because the acceleration seen by the mass in-
creases with the frequency. Since the deflection seen
in the spring, X, is reduced in this region, the force
transmitted by the spring (F = kx) to the base is re-
duced. Therefore, the mass–spring–damper system
is isolating the harmonic force from the mounting
base – referred to as vibration isolation. Interest-
ingly, more damping actually reduces the effects of
vibration isolation when r≫ 1 because the damping
force (F = cv) is also transmitted to the base.

• whatever the damping is, the vibration is 90 degrees
out of phase with the forcing frequency when the
frequency ratio r =1, which is very helpful when it
comes to determining the natural frequency of the
system.

• whatever the damping is, when r≫1, the vibration is
180 degrees out of phase with the forcing frequency

• whatever the damping is, when r ≪ 1, the vibration
is in phase with the forcing frequency

3.3.1 What causes resonance?

Resonance is simple to understand if the spring and mass
are viewed as energy storage elements – with the mass
storing kinetic energy and the spring storing potential en-
ergy. As discussed earlier, when themass and spring have
no external force acting on them they transfer energy back
and forth at a rate equal to the natural frequency. In other
words, if energy is to be efficiently pumped into both the
mass and spring the energy source needs to feed the en-
ergy in at a rate equal to the natural frequency. Apply-
ing a force to the mass and spring is similar to pushing a
child on swing, a push is needed at the correct moment to

make the swing get higher and higher. As in the case of
the swing, the force applied does not necessarily have to
be high to get large motions; the pushes just need to keep
adding energy into the system.
The damper, instead of storing energy, dissipates energy.
Since the damping force is proportional to the velocity,
the more the motion, the more the damper dissipates the
energy. Therefore, a point will come when the energy
dissipated by the damper will equal the energy being fed
in by the force. At this point, the system has reached
its maximum amplitude and will continue to vibrate at
this level as long as the force applied stays the same. If
no damping exists, there is nothing to dissipate the en-
ergy and therefore theoretically the motion will continue
to grow on into infinity.

3.3.2 Applying “complex” forces to the mass–
spring–damper model

In a previous section only a simple harmonic force was
applied to the model, but this can be extended consid-
erably using two powerful mathematical tools. The first
is the Fourier transform that takes a signal as a function
of time (time domain) and breaks it down into its har-
monic components as a function of frequency (frequency
domain). For example, by applying a force to the mass–
spring–damper model that repeats the following cycle – a
force equal to 1 newton for 0.5 second and then no force
for 0.5 second. This type of force has the shape of a 1 Hz
square wave.

How a 1 Hz square wave can be represented as a summation of
sine waves(harmonics) and the corresponding frequency spec-
trum. Click and go to full resolution for an animation

The Fourier transform of the square wave generates a
frequency spectrum that presents the magnitude of the
harmonics that make up the square wave (the phase is
also generated, but is typically of less concern and there-
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fore is often not plotted). The Fourier transform can
also be used to analyze non-periodic functions such as
transients (e.g. impulses) and random functions. The
Fourier transform is almost always computed using the
Fast Fourier Transform (FFT) computer algorithm in
combination with a window function.
In the case of our square wave force, the first component
is actually a constant force of 0.5 newton and is repre-
sented by a value at “0” Hz in the frequency spectrum.
The next component is a 1 Hz sine wave with an ampli-
tude of 0.64. This is shown by the line at 1 Hz. The re-
maining components are at odd frequencies and it takes
an infinite amount of sine waves to generate the perfect
square wave. Hence, the Fourier transform allows you to
interpret the force as a sum of sinusoidal forces being ap-
plied instead of a more “complex” force (e.g. a square
wave).
In the previous section, the vibration solution was given
for a single harmonic force, but the Fourier transformwill
in general give multiple harmonic forces. The second
mathematical tool, “the principle of superposition”, al-
lows the summation of the solutions from multiple forces
if the system is linear. In the case of the spring–mass–
damper model, the system is linear if the spring force is
proportional to the displacement and the damping is pro-
portional to the velocity over the range of motion of in-
terest. Hence, the solution to the problem with a square
wave is summing the predicted vibration from each one
of the harmonic forces found in the frequency spectrum
of the square wave.

3.3.3 Frequency response model

The solution of a vibration problem can be viewed as an
input/output relation – where the force is the input and
the output is the vibration. Representing the force and
vibration in the frequency domain (magnitude and phase)
allows the following relation:

X(iω) = H(iω) · F (iω) or H(iω) =
X(iω)

F (iω)
.

H(iω) is called the frequency response function (also re-
ferred to as the transfer function, but not technically as
accurate) and has both a magnitude and phase compo-
nent (if represented as a complex number, a real and
imaginary component). The magnitude of the frequency
response function (FRF) was presented earlier for the
mass–spring–damper system.

|H(iω)| =
∣∣∣X(iω)
F (iω)

∣∣∣ = 1
k

1√
(1−r2)2+(2ζr)2

,

where r = f
fn

= ω
ωn
.

The phase of the FRF was also presented earlier as:

∠H(iω) = − arctan
(

2ζr

1− r2

)
.

For example, calculating the FRF for a mass–spring–
damper system with a mass of 1 kg, spring stiffness of
1.93 N/mm and a damping ratio of 0.1. The values of
the spring and mass give a natural frequency of 7 Hz for
this specific system. Applying the 1 Hz square wave from
earlier allows the calculation of the predicted vibration of
the mass. The figure illustrates the resulting vibration. It
happens in this example that the fourth harmonic of the
square wave falls at 7 Hz. The frequency response of the
mass–spring–damper therefore outputs a high 7 Hz vi-
bration even though the input force had a relatively low 7
Hz harmonic. This example highlights that the resulting
vibration is dependent on both the forcing function and
the system that the force is applied to.

Frequency response model

The figure also shows the time domain representation of
the resulting vibration. This is done by performing an in-
verse Fourier Transform that converts frequency domain
data to time domain. In practice, this is rarely done be-
cause the frequency spectrum provides all the necessary
information.
The frequency response function (FRF) does not neces-
sarily have to be calculated from the knowledge of the
mass, damping, and stiffness of the system, but can be
measured experimentally. For example, if a known force
is applied and sweep the frequency and then measure the
resulting vibration the frequency response function can be
calculated and the system characterized. This technique
is used in the field of experimental modal analysis to de-
termine the vibration characteristics of a structure.

4 Multiple degrees of freedom sys-
tems and mode shapes

The simple mass–spring damper model is the foundation
of vibration analysis, but what about more complex sys-
tems? The mass–spring–damper model described above
is called a single degree of freedom (SDOF) model since
the mass is assumed to only move up and down. In the
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case of more complex systems the system must be dis-
cretized into more masses which are allowed to move
in more than one direction – adding degrees of free-
dom. The major concepts of multiple degrees of freedom
(MDOF) can be understood by looking at just a 2 degree
of freedom model as shown in the figure.

2 degree of freedom model

The equations of motion of the 2DOF system are found
to be:

m1ẍ1+(c1 + c2)ẋ1−c2ẋ2+(k1 + k2)x1−k2x2 = f1,

m2ẍ2−c2ẋ1+(c2 + c3)ẋ2−k2x1+(k2 + k3)x2 = f2.

This can be rewritten in matrix format:

[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+

[
c1 + c2 −c2
−c2 c2 + c3

]{
ẋ1
ẋ2

}
+

[
k1 + k2 −k2
−k2 k2 + k3

]{
x1
x2

}
=

{
f1
f2

}
.

Amore compact form of this matrix equation can be writ-
ten as:

[
M

]{
ẍ
}
+

[
C
]{
ẋ
}
+

[
K
]{
x
}
=

{
f
}

where
[
M

]
,
[
C
]
, and

[
K
]
are symmetric matrices re-

ferred respectively as the mass, damping, and stiffness
matrices. The matrices are NxN square matrices where
N is the number of degrees of freedom of the system.
In the following analysis involves the case where there is
no damping and no applied forces (i.e. free vibration).
The solution of a viscously damped system is somewhat
more complicated.[9]

[
M

]{
ẍ
}
+

[
K
]{
x
}
= 0.

This differential equation can be solved by assuming the
following type of solution:

{
x
}
=

{
X
}
eiωt.

Note: Using the exponential solution of
{
X
}
eiωt is a

mathematical trick used to solve linear differential equa-
tions. Using Euler’s formula and taking only the real part

of the solution it is the same cosine solution for the 1 DOF
system. The exponential solution is only used because it
is easier to manipulate mathematically.
The equation then becomes:

[
−ω2

[
M

]
+

[
K
]]{

X
}
eiωt = 0.

Since eiωt cannot equal zero the equation reduces to the
following.

[[
K
]
− ω2

[
M

]]{
X
}
= 0.

4.1 Eigenvalue problem

This is referred to an eigenvalue problem in mathematics
and can be put in the standard format by pre-multiplying
the equation by

[
M

]−1

[[
M

]−1[
K
]
− ω2

[
M

]−1[
M

]]{
X
}
= 0

and if:
[
M

]−1[
K
]
=

[
A
]
and λ = ω2

[[
A
]
− λ

[
I
]]{

X
}
= 0.

The solution to the problem results in N eigenvalues (i.e.
ω2
1 , ω

2
2 , · · ·ω2

N ), where N corresponds to the number of
degrees of freedom. The eigenvalues provide the natu-
ral frequencies of the system. When these eigenvalues
are substituted back into the original set of equations, the
values of

{
X
}
that correspond to each eigenvalue are

called the eigenvectors. These eigenvectors represent the
mode shapes of the system. The solution of an eigenvalue
problem can be quite cumbersome (especially for prob-
lemswithmany degrees of freedom), but fortunatelymost
math analysis programs have eigenvalue routines.
The eigenvalues and eigenvectors are often written in the
following matrix format and describe the modal model of
the system:

[
⧹ω2

r⧹

]
=

ω
2
1 · · · 0
... . . . ...
0 · · · ω2

N

 and
[
Ψ
]

=

[{
ψ1

}{
ψ2

}
· · ·

{
ψN

}]
.

A simple example using the 2 DOF model can help illus-
trate the concepts. Let both masses have a mass of 1 kg
and the stiffness of all three springs equal 1000 N/m. The
mass and stiffness matrix for this problem are then:

[
M

]
=

[
1 0
0 1

]
and

[
K
]

=[
2000 −1000
−1000 2000

]
.

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Symmetric_matrices
https://en.wikipedia.org/wiki/Euler%2527s_formula
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Mode_shape
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Then
[
A
]
=

[
2000 −1000
−1000 2000

]
.

The eigenvalues for this problem given by an eigenvalue
routine will be:

[
⧹ω2

r⧹

]
=

[
1000 0
0 3000

]
.

The natural frequencies in the units of hertz are then (re-
membering ω=2πf ) f1=5.033 Hz and f2=8.717 Hz .
The two mode shapes for the respective natural frequen-
cies are given as:

[
Ψ
]
=

[{
ψ1

}{
ψ2

}]
=

[{
−0.707
−0.707

}
1

{
0.707
−0.707

}
2

]
.

Since the system is a 2 DOF system, there are two modes
with their respective natural frequencies and shapes. The
mode shape vectors are not the absolute motion, but just
describe relativemotion of the degrees of freedom. In our
case the first mode shape vector is saying that the masses
are moving together in phase since they have the same
value and sign. In the case of the second mode shape
vector, each mass is moving in opposite direction at the
same rate.

4.2 Illustration of amultiple DOFproblem

When there are many degrees of freedom, one method
of visualizing the mode shapes is by animating them. An
example of animated mode shapes is shown in the figure
below for a cantilevered I-beam. In this case, the finite el-
ement method was used to generate an approximation to
the mass and stiffness matrices and solve a discrete eigen-
value problem. Note that, in this case, the finite element
method provides an approximation of the 3D electrody-
namics model (for which there exists an infinite number
of vibration modes and frequencies). Therefore, this rela-
tively simple model that has over 100 degrees of freedom
and hence as many natural frequencies and mode shapes,
provides a good approximation for the first natural fre-
quencies and modes†. Generally, only the first few modes
are important for practical applications.

^ Note that when performing a numerical approximation
of any mathematical model, convergence of the parame-
ters of interest must be ascertained.

4.3 Multiple DOF problem converted to a
single DOF problem

The eigenvectors have very important properties called
orthogonality properties. These properties can be used to

greatly simplify the solution of multi-degree of freedom
models. It can be shown that the eigenvectors have the
following properties:

[
Ψ
]T [

M
][
Ψ
]
=

[⧹mr⧹
]
,[

Ψ
]T [

K
][
Ψ
]
=

[⧹kr⧹]
.[⧹mr⧹

]
and

[⧹kr⧹]
are diagonal matrices that contain

the modal mass and stiffness values for each one of the
modes. (Note: Since the eigenvectors (mode shapes) can
be arbitrarily scaled, the orthogonality properties are of-
ten used to scale the eigenvectors so the modal mass value
for each mode is equal to 1. The modal mass matrix is
therefore an identity matrix)
These properties can be used to greatly simplify the so-
lution of multi-degree of freedom models by making the
following coordinate transformation.

{
x
}
=

[
Ψ
]{
q
}
.

Using this coordinate transformation in the original free
vibration differential equation results in the following
equation.

[
M

][
Ψ
]{
q̈
}
+
[
K
][
Ψ
]{
q
}
= 0.

Taking advantage of the orthogonality properties by pre-
multiplying this equation by

[
Ψ
]T

[
Ψ
]T [

M
][
Ψ
]{
q̈
}
+

[
Ψ
]T [

K
][
Ψ
]{
q
}
= 0.

The orthogonality properties then simplify this equation
to:

[⧹mr⧹
]{
q̈
}
+
[⧹kr⧹]{

q
}
= 0.

This equation is the foundation of vibration analysis for
multiple degree of freedom systems. A similar type of
result can be derived for damped systems.[9] The key is
that the modal mass and stiffness matrices are diagonal
matrices and therefore the equations have been “decou-
pled”. In other words, the problem has been transformed
from a large unwieldy multiple degree of freedom prob-
lem into many single degree of freedom problems that
can be solved using the same methods outlined above.
Solving for x is replaced by solving for q, referred to as
the modal coordinates or modal participation factors.
It may be clearer to understand if

{
x
}
=

[
Ψ
]{
q
}
is writ-

ten as:

{
xn

}
= q1

{
ψ
}
1
+q2

{
ψ
}
2
+q3

{
ψ
}
3
+· · ·+qN

{
ψ
}
N
.

https://en.wikipedia.org/wiki/Cantilever
https://en.wikipedia.org/wiki/I-beam
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Vibration#endnote_1
https://en.wikipedia.org/wiki/Vibration#ref_1
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Identity_matrix


10 7 FURTHER READING

Written in this form it can be seen that the vibration at
each of the degrees of freedom is just a linear sum of the
mode shapes. Furthermore, how much each mode “par-
ticipates” in the final vibration is defined by q, its modal
participation factor.

5 See also
• Acoustic engineering

• Balancing machine

• Base isolation

• Cushioning

• Critical speed

• Damping

• Dunkerley’s Method

• Earthquake engineering

• Fast Fourier transform

• Mechanical engineering

• Mechanical resonance

• Modal analysis

• Mode shape

• Noise and vibration on maritime vessels

• Noise, Vibration, and Harshness

• Pallesthesia

• Passive heave compensation

• Quantum vibration

• Random vibration

• Ride quality

• Shaker (testing device)

• Shock

• Shock and vibration data logger

• Simple harmonic oscillator

• Sound

• Structural acoustics

• Structural dynamics

• Tire balance

• Torsional vibration

• Vibration control

• Vibration isolation

• Vibration of rotating structures

• Wave

• Whole body vibration
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